

Contents

Landfill Gas Project for the green society through Public-Private Partnership

Yoon, Jong-Seok

Director of Environmental Policy Division Daegu Metropolitan City, Korea E-mail:jong@korea.kr Phon:+82-53-803-4170

- 1. Introduction to Daegu Metropolitan City
- 2. Background of Energy Recovery Project
- 3. Scope and Progress of Project
- 4. Obstacles, Effects of Project and Future Projects

Daegu, Open to World

Introduction to Daegu

❖ Population : 2.5 Million (3rd largest in Korea)

♦ Area: 884km (212,160 acre)

Major Industries: Textile and Fashion design,

Machinery, Optical industry, High Quality Medical Service

* GRDP: 26.8 Million \$/yr

Environmental Policies in Daegu

☐ Vision for Environment

" Healthy city where nature is alive and breathing"

☐ Environmental Policies

1. Solar City Projects

- The 1st International Solar City Congress 2004 (2004.11, Daegu EXCO [Exhibition and Convention Center)
- Announcing Solar City Daegu, and enactment of ordinance for Solar City
- Holding annual international Green Energy EXPO's,
- Building 10,000 Solar Houses

Environmental Policies in Daegu

2. Exemplary City for Climate Change Diminution

- Reduction of Greenhouse gases of 5% by 2020, compared with 2005
- Green-life Campaign and Practice
- Management System for Greenhouse Gas Reduction

3. Air and Water Quality Control

- The Change to Natural Gas Buses from Diesel fueled Buses
- Adoption of Total Maximum Daily Load Management System to manage water basin

Background of LFG Project

☐ Project Definition

Energy generation project through active collection of LFG generated by biological decomposition of waste in large MSW (municipal solid waste) landfill site

☐ Background and Objectives

- 1. Control of malodorous and explosive compounds from landfill sites
- 2. Economical benefit by collected gas utilization
- Contribution to greenhouse gas emission reduction (Clean Development Mechanism project)

State of Landfill Site

☐ State of Landfill Site

- Location: Dalsong District area - Period of landfilling: since 1990 - Area: 435,000 m² (104.4 Acres)

- Capacity: 9,225,000 m³

- Landfill completed: 8,815,000 m³

- Type of Landfill: Facultative aerobic landfill

for MSW (municipal solid waste)

 Now under expansion work to 23,154,000 m³ of capacity (250% expansion in capacity)

\square Waste generation and treatment in Daegu

- MSW generation : 2.6 thousands tons/day
- Treatment : Recycling and Reuse 56.8%, Landfill 30.5%, Incineration 12.7%

General Description for LFG Project

- ☐ Project type: Private Finance Initiative thru BTO (Build-Transfer-Operate)
 - Private operation for 20 years by Deagu Energy & Environment Co.
- ☐ Construction Period: May 2005 ~ September 2006 (for 17 months)
- ☐ Capital Cost: 19.6 Million USD (fully supplied by private sector)
- ☐ Gas Utilization: District Heating (10,000 households)
- ☐ Facilities
 - 105 gas extraction wells
 - Piping and Purifier: 130 m³/min
 - Electric power generator (gas engine) 1.5MW (750KW x 2EA)
 - Gas storage (3,000 m³, 3-6 atm.)

Process of LFG Project

- □ 2002. 08. 30 : Public notice of private finance initiative project scheme for LFG recovery
- □ 2004. 02. 27 : Private part selection, making an agreement and authorization
- ☐ 2005. 05. 10 : Construction started ☐ 2006. 09. 30 : Construction ended
- □ 2007. 8. 19 : Certified as a CDM Project by the UN (the first certified CDM project in Korea local government)
- □ 2009. 11. 2 : UN notified the CER (Certified Emission Reduction)
 - CER: 387,000 t CO_{2eg}/yr
 - It is worth 7,346,000 USD/yr (1 ton of CO_2 =13 Euro)

Schematic Diagram of LFG Recovery and Utilization Proces

View of Gas Storage and Electric Power Generator

Constructing the LFG Extraction Well

Inner View of LFG Extraction Well

g

Gas Purifier Facilities

LFG Utilization

 \square LFG Recovery

- Annual recovery : 52,7 Million Nm³/yr

- Uses : 95%

District Heating (10,000 households)

Electric power generation for

own use

- Economical Benefit : 12,531,000 USD/yr

(CER: 7,346,000 USD/yr, Gas utilization: 5,185,000 USD/yr

 $\hfill\Box$ Composition of LFG

- CH₄: 51.48%, CO₂: 40.80%

- Others (moisture, nitrogen, ammonia, O_2 etc.) : 7.72%

0

CDM Project

☐ Background

- -Contribution to greenhouse gas emission reduction and climate change diminution
- -To create Economical benefit
- -To Secure the operation of LFG recovery system through CER proceeds

☐ Project Process

- Investigation and Feasibility Study on the CDM Project of LFG recovery : Jan. 2006 \sim April (by Consulting Company)
- Approved by Korean Government : Jan. 2007
- Applied to the UN for a CDM project: Aug. 2007
- Monitoring greenhouse gas emission reduction : Aug. 2007 $\,\sim\,$ July 2008
- UN certified 387,000 ton CER per year : Nov. 2. 2009

 387,000 tons/yr x 13 Euro/ton → 7,346,000 USD/yr

Results of LFG Project

1. Reduction of Malodor from Landfill Site

- -The complaints of residents have been reduced
- -Air quality has been upgraded through the LFG recovery and by preventing onsite incineration

2. Energy Generation from Released LFG

- -LFG utilization as a district heating fuel: 52,739,000 Nm3/yr
- -Electric power generation for own usage

3. Greenhouse Gas Reduction and Economical Benefit

- -Annual reduction of 387 thousands tons of greenhouse gases
- -Economical benefit from CER trading: 7,346,000 USD/yr
- -Gas utilization: 5,185,000 USD/yr

Obstacles to Progress

- 1. Strong fear of property price plummets and environmental deterioration
- 2. Enormous expense and technical insufficiency in LFG recovery and utilization
- 3. Distrust in LFG and its limited uses

Overcoming the Obstacles

1. Persuading people

- supporting projects for residents (19,129,000 USD, gymnasium and citizens hall, etc.)
- Trust recovery through employing residents as part time monitors observing landfill operations

2. Inviting Private Finance and Technology

- Selecting a high capable company through expert consulting and constructability evaluation
- Cooperation with national government and regional assembly for approving the private finance initiative project

Using the LFG as a District Heating Fuel by Korea District Heating Corporation.

- Securing the quality and safety of LFG through high technology
- Utilizing the landfill site as a green renewable energy complex

Future Projects for Green Renewable Energy

- 1. Addition of LFG recovery facilities to the expanded landfill site
- 2. Constructing a green renewable complex in landfill site with RDF (Refuse Derived Fuel) and CHP (Combined Heat and Power) generation system
- 3. Biogas recovery from food waste (under construction)
- 4. Maximizing energy generation through waste heat recovery from MSW incinerators
- 5. Energy recovery from biogas in sewage treatment facilities

